BUILDUP RATE OF VAPOR BUBBLES AT A
HEATER SURFACE
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Various solutions are considered to the problem concerning the buildup rate of vapor bubbles
at a heater surface. The applicability ranges of extremal solutions are established on the
basis of the Jacob number.

One basic physical parameter which characterizes the heat transfer during boiling is the buildup rate
of vapor hubbles at the heater surface. The buildup of a bubble is due to evaporation of superheated liquid
adjacent to its surface. The rate of heat supply is determined by the hydrodynamic conditions around the
bubble surface.

So far various physical models have been proposed to describe the buildup of vapor bubbles, and so-
lutions to the problem have been obtained accordingly. Several authors [1-5] have derived appropriate re-
lations which can be put in the form of the following equation: ’
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Solution (1) is based on the concept of a vapor bubble building up inside the volume of superheated
liquid due to an excess superheat enthalpy. Depending on the method of solution and on the precision with
which various factors are accounted for {curvature of the heater surface, dynamic effects, etc.), the val-
ues of coefficient 8, range from 8/97 to 2.

D. A. Labuntsov [6, 7] has developed new physical concepts about the buildup rate of vapor bubbles
nucleating on the heater surface. According to his model, the principal evaporation zone comprises the
areas near the bubble base. Moreover, the heat for evaporation enters directly from the heater surface,
conducted through the layer of adjacent superheated liquid. Such a model of the mechanism has yielded
the following solution:
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dt

It is quite evident that the basic difference between solutions (1) and (2) lies in the power of the Jakob
modulus in the expression for the buildup rate. Inasmuch as the value of the Jakob modulus is determined
by the thermal flux density and the saturation pressure, the buildup rate of a bubble is different according
to (1) and (2) respectively, depending on the basic state parameters.
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V. V. Yagov [8] has proposed a new model of bubble buildup on a heater surface, It is assumed in
this model that evaporation of the liquid into a vapor bubble results from the heat transmitted through the
liquid layer at the bubble base, directly from the heater surface, and the heat given off by the superheated
liquid layer at the interphase boundary. The solution based on such a model will be written as
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We introduce here
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With this notation, formula (3) becomes
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A comparison of formula (3) with numerous test data in [8] has shown that the agreement is closest when
the geometrical factors are 83 = 0.3 and B, = 6.

The calculation of ¢ (Ja) is shown in Fig. 1 for Ja from 1072 to 10%, with g5 = 0.3 and g8, = 6.

For 1072 =< Ja = 1.0, according to the graph, it may be assumed that ¢(Ja) = 1. The mean relative
error here is ~ 8%. When Ja = 600, then ¢(Ja) = 2(83/8,)Ja. Thus, the range 1072 < Ja = 1.0 may be re-
garded as the range of small Jakob modulus (high saturation pressure). Solution (2) is applicable to this
range,

The range Ja < 600 may be regarded as the range of a large Jakob modulus (low saturation pressure),
Here solution (1) is applicable.

For the range 1 < Ja < 600 it is necessary to use the general solution (3) in an analysis of bubble boil-
ing. Calculations have shown that, for the determination of breakaway dimensions and frequency in the
case of vapor bubbles [9], solution (3) yields a closer agreement with test data.

NOTATION
Ja = p'c'At/p"r is the Jakob modulus;
o' is the density of the liquid;
p" is the density of the vapor;
c' is the specific heat of the liquid;
At = ty—tg;
tw is the temperature of the heater surface;
ts is the saturation temperature;
r is the latent heat of evaporation;
at is the thermal diffusivity of the liquid;
R is the bubble radius; ‘
T is the time.
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